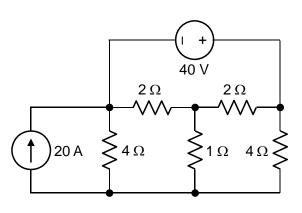
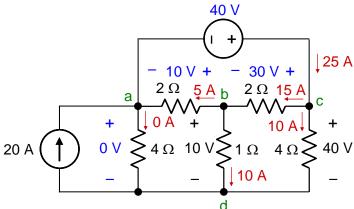
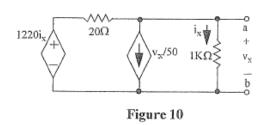
Determine all the currents and voltages in the circuit using superposition and mark them on the circuit diagram.



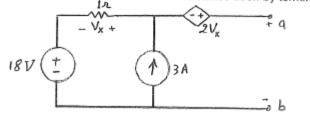
Solution:





- Find the Thevenin equivalent of the circuit shown in figure 10.
- a) $V_{th} = 10V$ and $R_{th} = 1K$
- b) $V_{th} = 0V$ and $R_{th} = 0.1K$ c) $V_{th} = 10V$ and $R_{th} = 2K$
- d) $V_{th} = 1V$ and $R_{th} = 1K$
- e) None of the above

10. For the circuit shown, find the Thevenin resistance seen by terminals ab



A.
$$4\Omega$$
B. 5Ω

C. 3Ω
D. 6Ω
E. None of the above.

Test JD 1000- 4/5

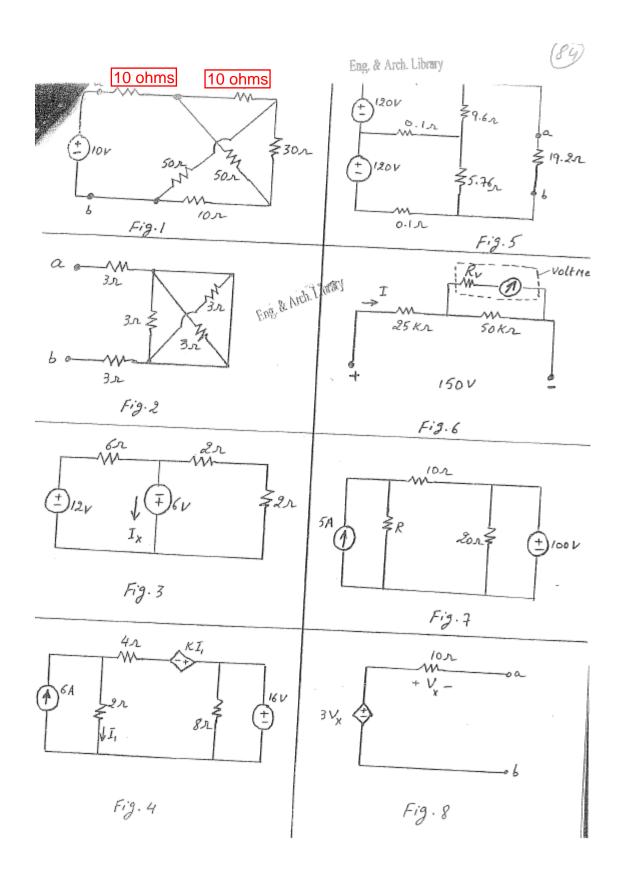
 In the circuit of Figure 1, the Thevenin resistance as seen from terminals ab is:

100/30 b. 100/90 c. 50/90 Refer to figures

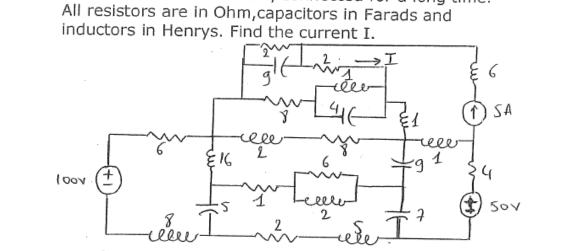
c. 50/9g
d. 10g
e. None of the above

- 10. In the circuit of Figure 8, the Thevenin equivalent resistance, across terminals a-b, is: 20Ω

None of the above



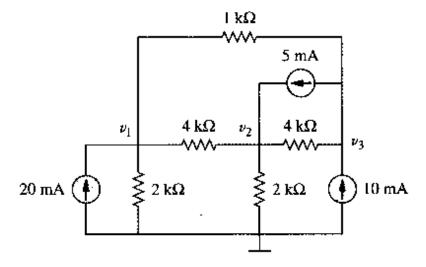
25. Consider the circuit below, connected for a long time.



a)5.357A b)11.25A c)7.5A d)22.5A e)NOA

Problem 1 (10 pts)

Consider the circuit shown below.



1. We, first, set the current sources 5 mA and 10 mA to zero. Determine the equivalent resistance seen by the 20 mA current source. (5 pts)

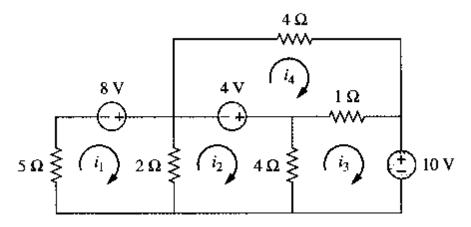
$$R_1 = (4 + 1)||4 = 20/9 \text{ k}\Omega; R_2 = 20/9 + 2 = 38/9 \text{ k}\Omega, R_{eq} = 2||(38/9) = 19/14 = 1.36 \text{ k}\Omega$$

2. Write the node voltage equations by inspections (do not solve) (5 pts)

1.75V ₁	-	0.25 <i>V</i> ₂	_	<i>V</i> ₃	=	20
-0.25V₁	+	V_2	_	0.25 <i>V</i> ₃	=	5
-V ₁	_	0.25V ₂	+	1.25 <i>V</i> ₃	=	5

Problem 2 (10 pts)

Consider the circuit shown below

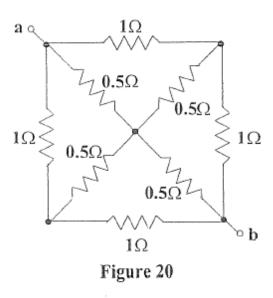


 We, first, set the 4V source and the 10V source to zero. Determine the equivalent resistor seen by the 8V voltage source. (5 pts)

 $R_{eq} = 5 + (2||4||4||1) = 5 + 0.5 = 5.5 \Omega$

2. Write the mesh-current equations. (do not solve). (5 pts)

$$7I_1 - 2I_2 - 0I_3 - 0I_4 = 8$$
 $-2I_1 + 6I_2 - 4I_3 - 0I_4 = 4$
 $0I_1 - 4I_2 + 5I_3 - I_4 = -10$
 $0I_1 - 0I_2 - I_3 + 5I_4 = -4$



21. Determine the resistance between terminals a b in figure 20.

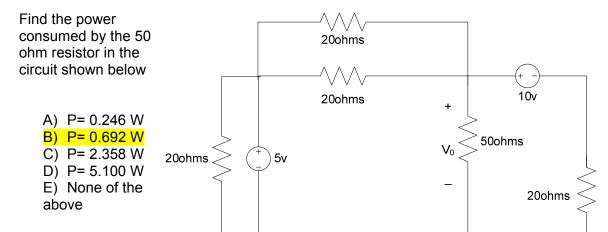
→a) 0.5Ω b) 0.6Ω c) 1.5Ω d) 0.25Ω Determine the equivalent resistance between terminals a and b, given that all resistances are 1 Ω .

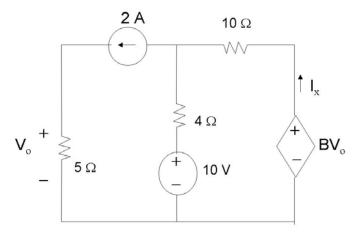
B. 4.5Ω

C. 4Ω D. 3 Ω

E. None of the above

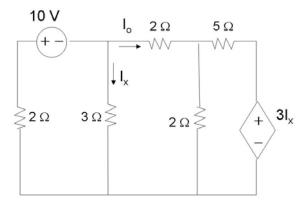
Solution: The resistances not connected directly to terminals a and b form a balanced bridge. Hence the resistance across the bridge does not carry any current and can be replaced by an open circuit or a short circuit. If replaced by an open circuit, $R_{eq} = 1 + 2||2 + 1 = 3 \Omega$.





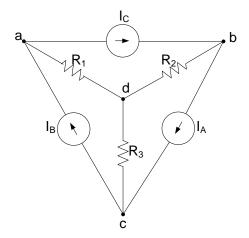
Given the circuit above, determine the current I_x if voltage-controlled current source has B=0.2:

- \rightarrow A) 0
 - B) 0.285
 - C) 1.285
 - D) 0.5
 - E) None of the above



What is I_0 ?

- A) 1 A
- → B) -1 A
 - C) 2 A
 - D) -2 A
 - E) None of the above

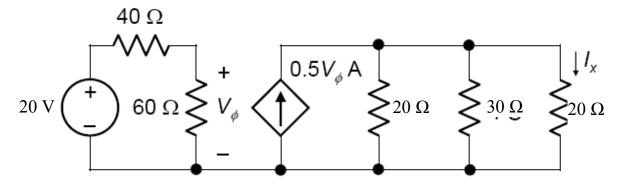


The following values are given:

 $I_A = 1 \text{ mA}, I_B = 2 \text{ mA}, I_C = 4 \text{ mA}, R_1 = R_2 = R_3 = 1 \text{ k}\Omega,$

What is the value of V_{bc} ?

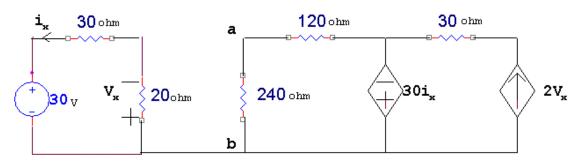
- → A) 4 V
 - B) -2 V
 - C) 1 V
 - D) 5 V
 - E) None of the above



Find I_x.

- A) 4.2 A
- B) 3.5 A
- → C) 2.25 A
 - D) 4.75 A
 - E) None of the above

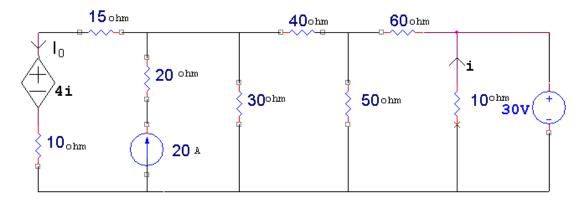
Problem 10



Find the Thevenin equivalent across terminals a and b.

- A) $R_{TH} = 40\Omega$, $V_{TH} = 6.67 \text{ V}$
- B) $R_{TH} = 40\Omega$, $V_{TH} = -6.67 \text{ V}$
- \rightarrow C) R_{TH} = 80Ω, V_{TH} = 12 V D) R_{TH} = 80Ω, V_{TH} = -12 V

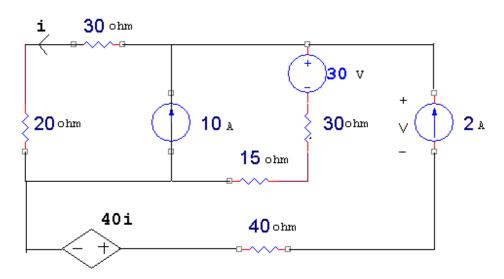
 - E) None of the above



Find the current, I₀, flowing through the dependant source.

- A) 9.4A
- B) 14A
- C) -3A
- D) -12A
- \rightarrow E) None of the above. Approx 6.6 A

Problem 12



Find the voltage, V, across the 2A source.

- A) 400 V
- →B) 140 V
 - C) 6 V
 - D) -300 V
 - E) None of the above

P3.1.25 Determine V_0 in Fig. P3.1.25 using node-voltage analysis.

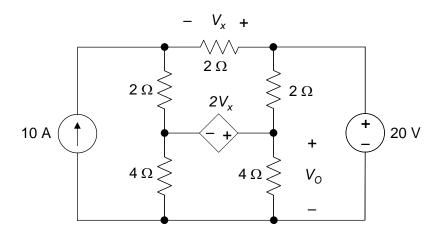
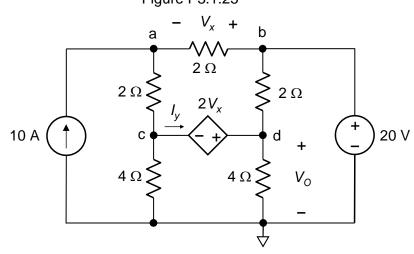


Figure P3.1.25

Solution: The node-voltage equation for node a is: $V_a - 0.5 V_b - 0.5 V_c = 10$; substituting $V_b = 20 \text{ V}$: $V_a - 0.5 V_c = 20$. For node c: $-0.5 V_a + 0.75 V_c = -I_y$; for node d: $-0.5 V_b + 0.75 V_d = I_y$; adding and substituting for V_b : $-0.5 V_a + 0.75 V_c + 0.75 V_d = 10$. For the dependent source: $V_d - V_c = 2 V_x = 2 V_b - 2 V_a$, or



 $2V_a - V_c + V_d = 40$. Solving, $V_a = 40$ V, $V_c = 40$ V, $V_d = V_O = 0$.

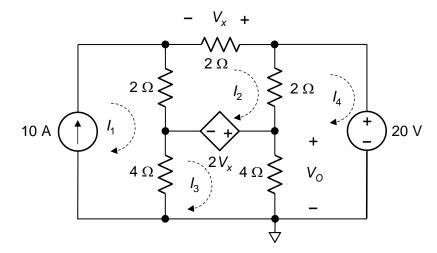
P3.1.26 Determine V_0 in Fig. P3.1.25 using mesh-current analysis.

Solution: For mesh 2:

$$-2I_1 + 6I_2 - 2I_4 =$$
 $-2V_x$; substituting $I_1 = 10$ and $V_x =$
 $-2I_2$: $I_2 - I_4 = 10$. For mesh 3:
 $-4I_1 + 8I_3 = 2V_x$;

$$I_2 + 2I_3 = 10$$
. For mesh 4: $-2I_2$
 $-4I_3 + 6I_4 = -20$, or $-I_2 -$
 $2I_3 + 3I_4 = -10$. Solving, $I_2 =$
10 A, $I_3 = 0$, and $I_4 = 0$, which

gives $V_0 = 0$.



P3.2.12 Determine V_0 in Fig. P3.1.19 using superposition and calculate the power dissipated in the 5 Ω resistor.

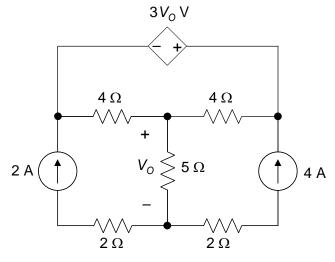
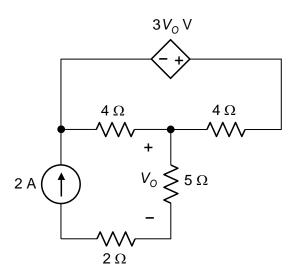


Figure P3.1.19

Solution: With the 2 A source acting alone, the circuit becomes as shown. The source current flows through the 5 Ω resistor, so that $V_{O1} = 10$ V. Similarly, when the 4 A source is applied alone, $V_{O2} = 20$ V. From superposition, $V_{O} = V_{O1} + V_{O2} = 30$ V. The dependent source does not contribute to V_{O} .

Power dissipated in the 5 Ω resistor is

$$\frac{(30)^2}{5} = 180 \text{ W}.$$



P3.2.13 Determine I_0 in Fig. P3.1.21 using superposition and calculate the power dissipated in the 5 S

resistor.

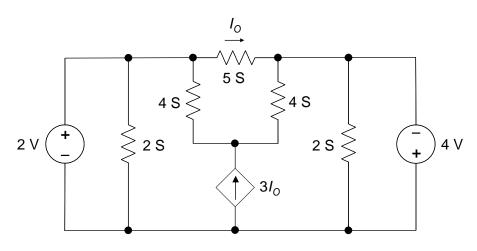
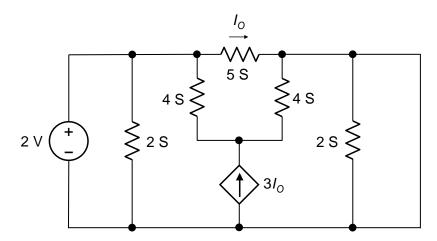


Figure P3.1.21

Solution: With the 2 V source acting alone, and the 4 V source replaced by a short circuit, the circuit becomes as shown. The source voltage is applied across the 5 S resistor, so that $I_{O1} = 10$ A. Similarly,



when the 4 V source is applied alone, I_{O2} = 20 A. From superposition, I_O = I_{O1} + I_{O2} = 30 A. The dependent source does not contribute to I_O . Power dissipated in the 5 S resistor is

$$\frac{(30)^2}{5} = 180 \text{ W}.$$

P4.1.8 Derive TEC between terminals ab in Fig. P4.1.8.

Solution: Let us first remove the 20 Ω resistor and reapply it later. On open circuit, each 1 A source produces a 10 V drop across the resistor in parallel with it. Hence $V_{oc1} = 20$ V. On short circuit, $I_{sc} = 1$ A, so that $R_{Th1} = 20$ Ω . When the 20 Ω resistor is added at terminals ab, $V_{Th} = 20 \times (20/40) = 10$ V and $R_{Th} = (20||20) = 10$ Ω

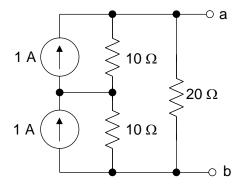
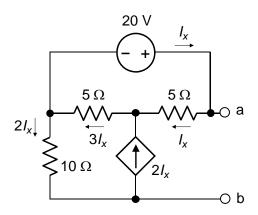


Figure P4.1.8

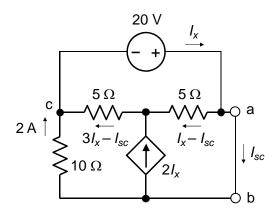
P4.1.9 Derive TEC between terminals ab in Fig. P4.1.9.

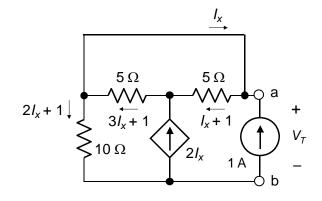
Solution: On open circuit, KVL around the upper mesh gives $20I_x = 20$, or $I_x = 1$ A. It follows that $V_{Th} = V_{oc} = 20 + 20I_x = 40$ V.

On short circuit, the current in the 10 Ω resistor is 2 A. KVL around the upper mesh gives: $20 = 5(I_x - I_{sc}) + 5(3I_x - I_{sc})$, or $2I_x - I_{sc} = 2$; from KCL at node c: $3I_x - I_{sc} + 2 = I_x$, or $2I_x - I_{sc} = -2$. This means that I_x and I_{sc} are indeterminate. This suggests that $R_{Th} = 0$, which would make I_{sc} indeterminate. To verify this, we apply a test



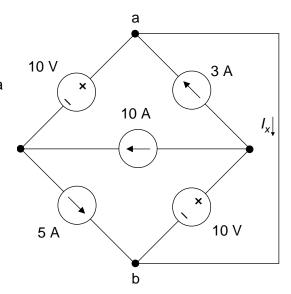
source of 1 A, with the voltage source set to zero. Then, $4I_x + 2 = 0$, so that $I_x = -0.5$ A and $V_T = 2(-0.5) + 1 = 0$. Hence $R_{Th} = 0$.

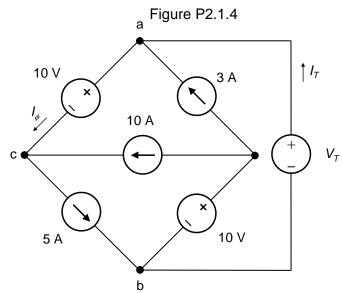




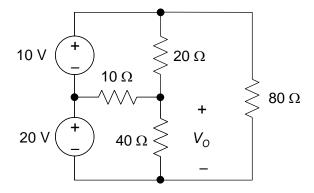
P4.1.10 Derive NEC between the short-circuited terminals ab in Fig. P2.1.4.

Solution: If a test voltage is applied, KCL at node a gives $I_{\phi} = I_{T} + 3$. From KCL at node c, $I_{T} + 3 + 10 = 5$, or $I_{T} = -8$ A, irrespective of V_{T} . It follows that $I_{N} = 8$ A. Since I_{T} is independent of V_{T} , it means that there is no resistance in parallel with the current source I_{N} .





P4.1.11 Determine V_0 in Fig. P3.1.7 using TEC.

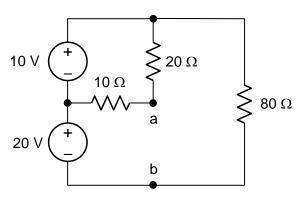


Solution: Open-circuit voltage: When only the

10 V source is applied,
$$V_{Th1} = \frac{10}{30} \times 10 = \frac{10}{3} \text{ V}.$$

When only the 20 V source is applied $V_{Th2} = 20$ V. Hence, $V_{Th} = 70/3$ V. With both sources set to zero, $R_{Th} = 10||20 = 20/3 \Omega$. It follows that $V_O = \frac{40}{40 + 20/3} \times \frac{70}{3} = 20$ V.

Figure P3.1.7



P4.1.12 Determine I_0 in Fig. P3.1.9 using NEC.

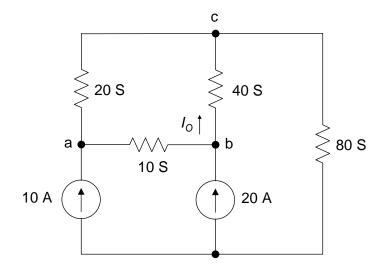


Figure P3.1.9

Solution: With the 10 A source acting

alone,
$$I_{N1} = \frac{10}{30} \times 10 = \frac{10}{3}$$
 A. With the 20

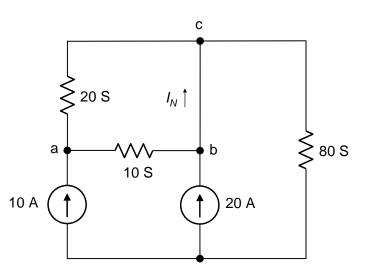
A source acting alone, $I_{N2} = 20$ A.

Hence, $I_N = 70/3 \text{ A}$.

The conductance between terminals bc

is
$$\frac{20\times10}{20+10} = \frac{20}{3}$$
 S. It follows from NEC

that
$$I_{\rm O} = \frac{40}{40 + 20/3} \times \frac{70}{3} = 20 \text{ A}.$$



P4.1.15 Determine V_0 in Fig. P3.1.15 using TEC.

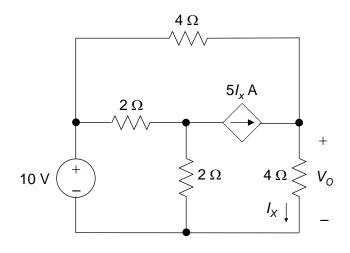


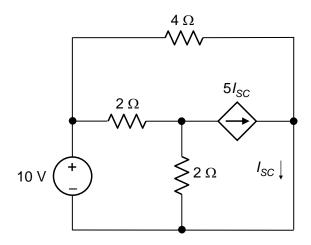
Figure P3.1.15

Solution: On open circuit, $I_x = 0$, and the dependent source becomes an open circuit. It follows that $V_{Th} = 10$ V. On short circuit, the circuit becomes as shown, where $I_x = I_{SC}$ and the dependent source becomes $5I_{SC}$. It follows from

KCL that:
$$I_{SC} = 5I_{SC} + \frac{10}{4}$$
, which gives

$$I_{SC} = -\frac{5}{8}$$
 A, and $R_{SC} = -16 \Omega$. Hence

$$V_{\rm O} = \frac{4}{4 - 16} \times 10 = -\frac{10}{3} \, \rm V.$$



P4.1.16 Determine I_0 in Fig. P3.1.17 using NEC.

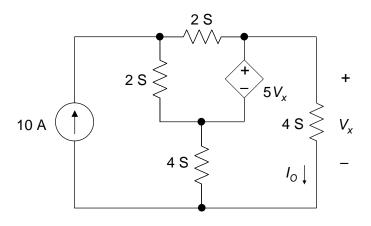
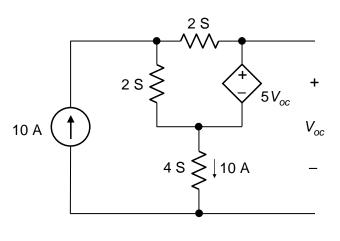


Figure P3.1.17

Solution: On open circuit, 10 A flows through the 4 S resistor, so that $V_{oc} = 5V_{oc} + \frac{10}{4}$, which gives $V_{oc} = -\frac{5}{8}$ A. On short circuit, $V_x = 0$ and the dependent source is zero, so that $I_N = 10$ A. This makes $G_N = -16$ S. It follows that $I_O = \frac{4}{4-16} \times 10 = -\frac{10}{3}$ A.

P4.1.17 Determine V_0 in Fig. P3.1.19 using NEC.

Solution: If the 5 Ω resistor is replaced by an open circuit, the circuit is invalid, as two unequal current sources will be connected in series through the 2 Ω resistors, and $V_{\rm O} \to \infty$. If a test source is applied in place of the 5 Ω resistor and the current sources replaced by open circuits, the resistance seen by the source is infinite. If the 5 Ω resistor is



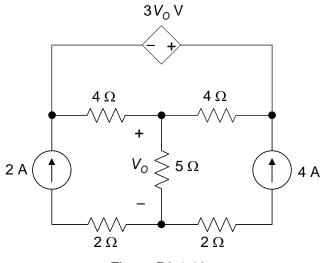


Figure P3.1.19

replaced by a short circuit, I_{SC} = 6 A. It follows that the circuit does not possess a TEC between the specified terminals, only an NEC consisting of an ideal current source of 6 A. This gives V_{O} = 30 V.

P4.1.18 Determine I_0 in Fig. P3.1.21 using TEC.

Solution: If the 5 S resistor is replaced by a short circuit, the circuit is invalid, as two unequal voltage sources will be connected in series, and $I_0 \rightarrow \infty$. If a test source is applied in place of the 5 S resistor and the voltage sources replaced by short

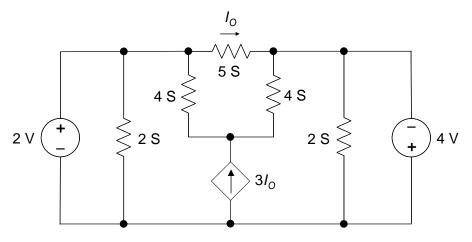


Figure P3.1.21

circuits, the resistance seen by the source is zero. If the 5 S resistor is replaced by an open circuit, $V_{Th} = 6$ V. It follows that the circuit does not possess an NEC between the specified terminals, only a TEC consisting of an ideal voltage source of 6 V. This gives $I_0 = 30$ A.

P4.1.19 Determine I_0 in Fig. P3.1.23 using NEC.

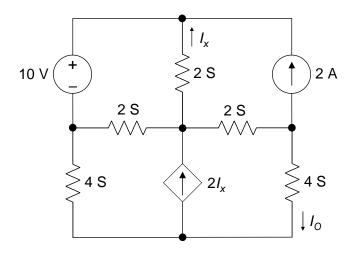
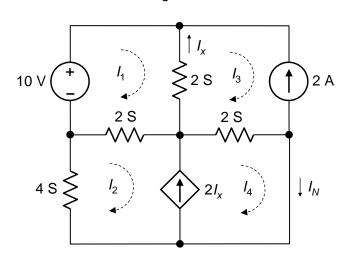


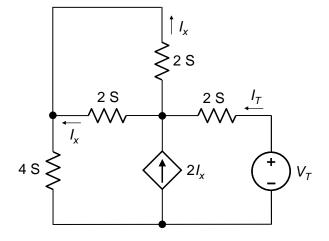
Figure P3.1.23

Solution: With the 4 S resistor replaced by a short circuit, I_0 can be obtained from mesh-current analysis. The mesh current equations are the same as those for P3.1.24 but with a coefficient of 0.5 for I_4 in the equation for mesh 4. The equations are:

$$I_1 - 0.5I_2 = 9$$
; $-0.5I_1 + 0.75I_2 + 0.5I_4 = -1$; and $2I_1 - I_2 + I_4 = -4$. Solving, $I_4 = I_0 = -22$ A.

If a test source is substituted for the 4 S resistor, with the independent source set to zero, it is seen from KCL at the middle node that $I_T = 0$, which means that the source resistance is infinite. The circuit does not possess a TEC between the specified terminals, only an NEC.





P4.1.20 Determine V_0 in Fig. P3.1.25 using TEC.

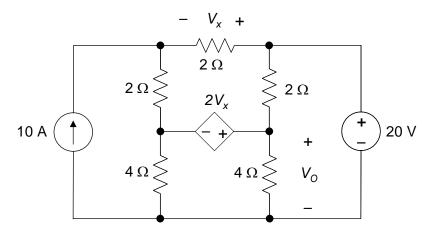


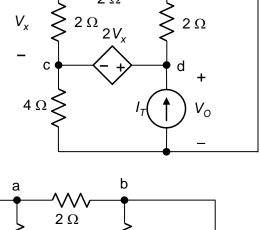
Figure P3.1.25

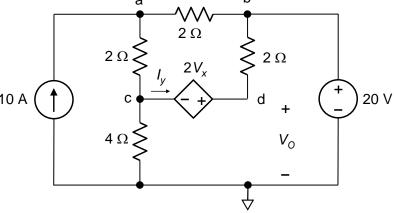
Solution: If a current source is applied at node d, with the independent sources set to zero, it is seen that $V_{ac} = V_x$, so that $V_{bd} = 0$ and $V_0 = 0$. In other words the source sees a short circuit and $R_{src} = 0$. If the resistor between node d and the reference node is replaced by an open circuit, the node-voltage equation at node a is: $V_a - 0.5V_c = 20$, and the node voltage equation at node c is: $-0.5V_a + 0.75V_c = -I_y$, where $I_y =$

voltage equation at node a is. a = 0.5, and voltage equation at node c is: $-0.5 V_a + 0.7$ where $I_y = 0.5(V_c + 2V_x - 20) = 0.5V_c + V_a - 30$. Substituting for I_y : $0.25 V_a + V_c = 30$. Solving, gives $V_a = V_c = 40$ V. Hence, $V_x = 10$ A (= 20 V and $V_d = 0$. In other

words, TEC and NEC are just

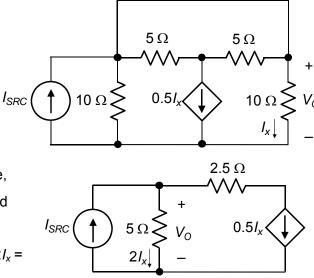
short circuits,





- 1. Determine V_O assuming I_{SRC} = 0.25 A.
 - A. 4 V
 - B. 1 V
 - C. 5 V
 - D. 2 V
 - E. 3 V

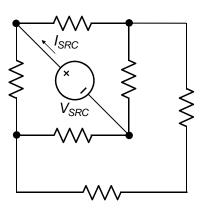
Solution: The two 5 Ω resistances can be combined in parallel to give a 2.5 Ω resistance, and the two 10 Ω resistances can be combined in parallel to give a 5 Ω resistance carrying a current of $2I_x$, as shown. It follows that $I_{SRC}-2I_x=0.5I_x$, or $I_x=\frac{I_{SRC}}{2.5}$ and $V_O=10I_x$, so that

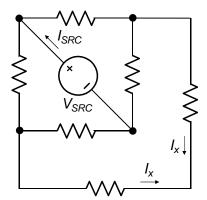


 $V_{\rm O} = 4I_{\rm SRC}$.

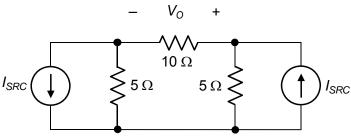
- 2. Determine I_{SRC} assuming V_{SRC} = 2 V and all resistances are 2 Ω .
 - A. 1.5 A
 - B. 3 A
 - C. 2.5 A
 - D. 2A
 - E. 1A

Solution: From symmetry the two currents I_x are equal and sum to zero. Hence, $I_x = 0$ and the two resistors can be removed. The equivalent resistance seen by the source is $(2 + 2)||(2 + 2) = 2 \Omega$. It follows that $I_{SRC} = V_{SRC}/2$.

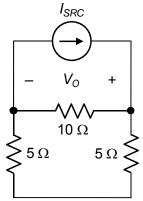




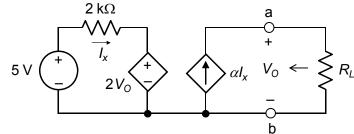
- 3. Determine V_0 assuming $I_{SRC} = 1$ A.
 - A. 7.5 V
 - B. 12.5 V
 - C. 5 V
 - D. 15 V
 - E. 10 V



Solution: The two current sources are equivalent to a current source I_{SRC} connected as shown, since KCL is the same at the two nodes. The resistance seen by the source is $10||(5 + 5) = 5 \Omega$. Hence, $V_O = 5I_{SRC}$.



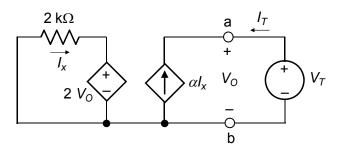
- 4. Determine Thevenin's resistance looking into terminals ab, assuming $\alpha = 10$.
 - A. 50Ω
 - B. 25Ω
 - C. 100Ω
 - D. 200 Ω
 - E. 20 Ω



Solution: When a test source V_T is applied at terminals ab, with the independent voltage source set to zero, it follows from the circuit that:

$$I_x = -\frac{2V_0}{2} = -V_0 = -V_T \text{ mA. } I_T = -\alpha I_x =$$

$$lpha V_T \, \mathrm{mA.} \, \, \mathrm{Hence}, \, \, \frac{V_T}{I_T} = \frac{1}{lpha} \, \mathrm{k}\Omega \equiv \frac{1000}{lpha} \, \Omega.$$



5. Determine V_2 so that $V_x = 0$, assuming $V_1 = 4 \text{ V}$.

- A. 8 V
- B. 6 V
- C. 6.5 V
- D. 7.5 V
- E. 7 V

Solution: The 6 Ω and 3 Ω resistors do not carry any current. They can removed from the circuit, with nodes a and b being at the same voltage. V_1 can be transformed to a current source $V_1/4$ A in parallel with a 4 Ω resistor. The total current is $(0.25\,V_1+2)$ A in parallel with 2 Ω . V_2 is the voltage of node a, which gives: $V_2 = 2(0.25\,V_1+2) = (0.5\,V_1+4)$ V.



6. Derive the mesh current equations in terms of I_1 , I_2 , and I_3 . DO NOT SOLVE THE EQUATIONS

Solution: Considering the voltage drop V_{ab} as a unit, the equation for mesh 1 is:

$$(10 + 5)I_1 - 5I_3 = 12 - V_{ab}$$

The mesh-current equation for mesh 2 is:

$$(20 + 5)I_2 - 5I_3 = V_{ab}$$

Adding these two equations:

$$15I_1 + 25I_2 - 10I_3 = 12$$

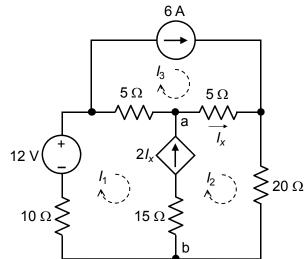
The remaining equations are:

$$I_3 = 6$$
, and

$$I_2 - I_1 = 2I_x = 2(I_2 - I_3)$$
, or

$$I_1 + I_2 - 2I_3 = 0$$

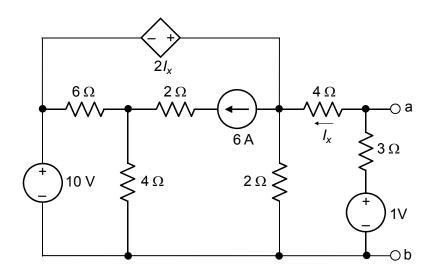
Note that if the 15 Ω resistor is denoted by R and the conventional mesh-current procedure is applied, the term in R cancels out. Thus, for mesh 1:



 $(10 + 5 + R)I_1 - RI_2 - 5I_3 = 12 - V_x$, where V_x is the voltage drop across dependent current source in the direction of I_1 . For mesh 2, $-RI_1 + (20 + 5 + R)I_2 - 5I_3 = V_x$. Adding these two equations gives the same equation as before.

If these equations are solved, I_1 = 22.8 A, I_2 = -10.8 A, I_x = -16.8 A, V_x = -804 V.

 Determine Thevenin's equivalent circuit seen between terminals a and b

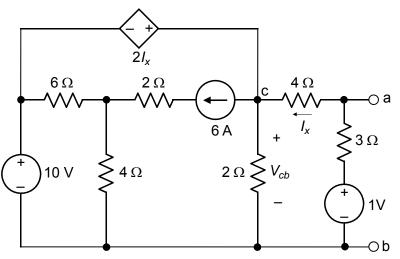


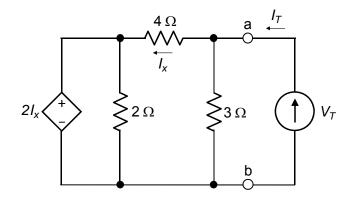
Solution:

<u>Method 1:</u> Leave the circuit as it is. Considering the mesh on the RHS, $1 = 3I_x + 4I_x + V_{cb}$, where $V_{cb} = 10 + 2I_x$. Substituting for V_{cb} gives $I_x = -1$ A, so that $V_{Th} = 4$ V.

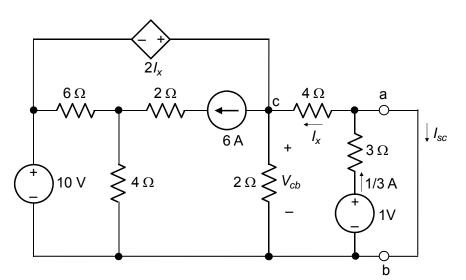
Applying a test source with the independent sources set to zero, the branch containing the 6 A source is open circuited.

The 6 Ω and 4 Ω resistors are in parallel with one terminal at node b and the other terminal connected to an open circuit. They do not carry any current and can be removed. The circuit reduces to that shown. $V_T = 4I_x + 2I_x = 6I_x$, and $I_T = I_x + V_T/3$. Substituting for I_x gives $V_T/I_T = R_{Th} = 2 \Omega$.





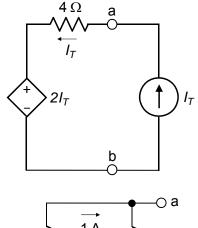
If terminals ab are short circuited, KVL around the outermost loop gives: $10 + 2I_x + 4I_x = 0$, so that $I_x = -5/3$ A; $I_{sc} = -I_x + 1/3 = 2$ A. It follows that $R_{Th} = 4/2 = 2 \Omega$.

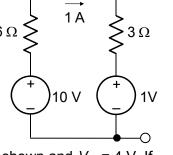


<u>Method 2:</u> If the branch consisting of the 1 V source in series with 3 Ω is removed, $I_x = 0$, the dependent source becomes a short circuit, and the open-circuit voltage between terminals a and b is the same as that of the 10 V source. Hence $V_{Th1} = 10$ V.

If a test current source I_T is applied between terminals a and b, with the independent sources set to zero, as before, and the 2 Ω resistor removed because it is in parallel with the $2I_x$ ideal voltage source and is redundant as far as V_{ab} is concerned, the circuit reduces to that shown. The $2I_T$ CCVS is equivalent to a 2 Ω resistor, which in series with the 4 Ω resistor gives R_{Th1} = 6 Ω .

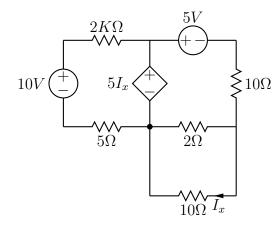
When the branch between terminals a and b is reintroduced, the circuit becomes as shown. With terminals a





and b open circuited, the current in the circuit is 1 A in the direction shown and V_{ab} = 4 V. If the voltage sources are set to zero, the resistance seen between terminals ab is (6||3) = 2 Ω . Hence, V_{Th} = 4 V and R_{Th} = 2 Ω .

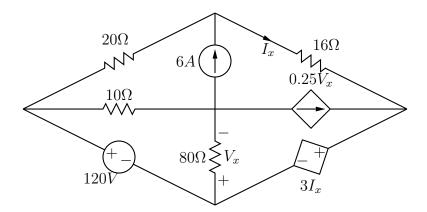
Find I_x .



- A) 230.8A
- B) 76.92A
- C) -76.92A
- D) -230.8A
- E) None of the above

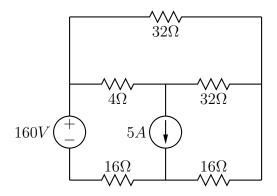
Problem 4

Find V_x .



- A) 130.9V
- B) -43.64V
- C) 43.64V
- D) -130.9V
- E) None of the above

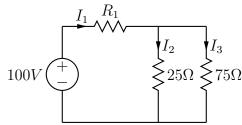
Find the power associated with the current source.



- A) 256W
- B) -200W
- C) 200W
- D) -256W
- E) None of the above

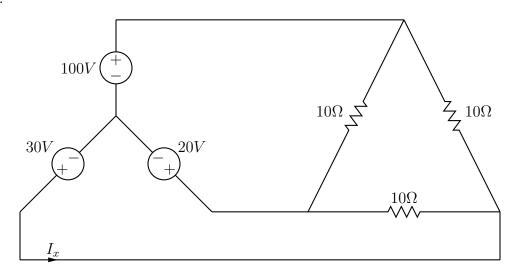
Problem 6

In the circuit below R_1 is chosen such that $I_3 = 1A$. Find R_1 .



- A) 12.5Ω
- B) 16Ω
- C) 25Ω
- D) 6.25Ω
- E) None of the above

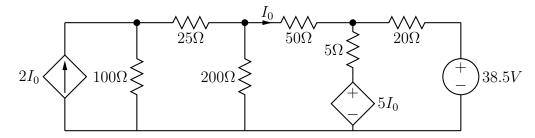
Find I_x .



- A) -6A
- B) 6A
- C) 16A
- D) -16A
- E) None of the above

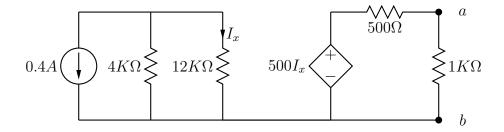
Problem 8

Find I_0 .



- A) 1.15A
- B) -0.65A
- C) -1.15A
- D) 0.65A
- E) None of the above

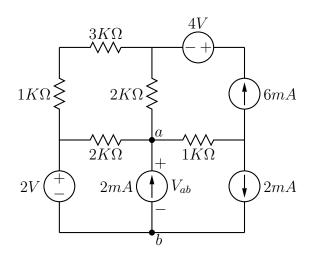
Find the Thevenin equivalent resistance between a and b.



- A) 333.33Ω
- B) 250Ω
- C) 83.33Ω
- D) 740.46Ω
- E) None of the above

Problem 10

Find the Thevenin equivalent voltage between a and b (V_{ab}) .

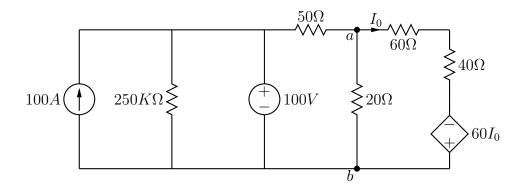


Find the Thevenin equivalent resistance between a and b of the previous figure.

- A) $6K\Omega$
- B) $8K\Omega$
- C) 4.5K Ω
- D) $1.5K\Omega$
- E) None of the above

Problem 12

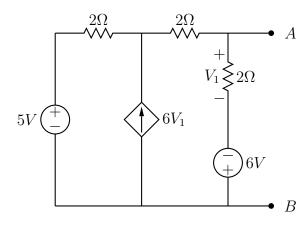
Find the Thevenin equivalent resistance between a and b.



- A) 6Ω
- B) 8.52Ω
- C) 14.28Ω
- D) 10.52Ω
- E) None of the above

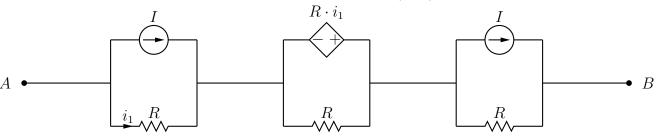
$\underline{\text{Problem 4}}$

Find V_1 .



- A) -1.22V
- B) 1.22V
- C) -1.57V
- D) 1.57V
- E) None of the above

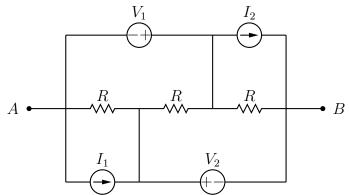
Find the Thevenin Equivalent Voltage between A and B (V_{AB}) .



- A) RI
- B) -3RI
- C) -RI
- D) 3RI
- E) None of the above

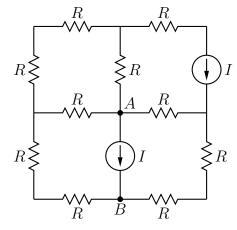
Problem 6

Find the Norton equivalent resistance between A and B.



- A) 3R
- B) 3R/2
- C) R/3
- D) R
- E) None of the above

Find the Norton equivalent current source between A and B.



- A) -2.28I(A)
- B) -1.24I(A)
- C) -3.21I(A)
- D) -6.42I(A)
- E) None of the above